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ABSTRACT

A review is presented describing our recent work to correlate the first hyperpolarizability, 3,
of organic materials with the molecular parameter bond length alternation (131.A). Donor-acceptor
pol yenes displaying awide B1.A range were synthesized. For aparticular chromophore, BILA was
fine-tuned by varying solvent polarity. The degree of BILA was analyzed by X-ray diffraction,
1}1-NMR and electronic absorption spectroscopy. Non-resonant, solvent-dcpenctent, electric field
induced second harmonic generation (1{1:1S11) measurements were performed to probe the variation
in the second-order nonlinearity as a function of ground-state polarization. The resulting trend,
which is fully consi stent With theoretical predictions, identified chromophores possessing
optimized positive and negative hyperpolarizabilities. An optimized chromophore was
incorporated in a polymer matrix and poled. The resulting electro-optic coefficient was found to be
significant] y enhanced relative to the longer chromophore 1)isperse Reel 1.

Introduct ion

Optimizing the first hyperpolarizability, B, of donor-acceptor compou nds requires a specific
donor/acceptor strength for a given conjugated bridge | 1,2]. For donor-acceptor polyenes, § can
be maximized when an optimal degree of mixing between ncutral and charge-separated canonical
resonance forms exists. This degree of mixing is related to the donor/acceptor strength and a
molecular parameter, bond length aternation (B1.A), defined as the difference bet ween the average
carbon-carbon single ant] double bond lengths in the polymethinc backbone. The degree of B1.A
arises from the linear combination, or mixing, of the two-limiting charge-transfer resonance forms
of the molecule, Figure 1, [3,4].

For unsubstituted polyenes, or chromophores with weak donors/acceptors, the neutral
canonical form is the dominant contributor to the ground state (A, Figure 1), resulting in large
posit ive BI1.A[3]. As the acceptor strength increases (B), the charge-separated resonance structure
contributes more to the ground state resulting in smaller B1.A[3] until both resonance forms
contribute equally (C) and the ground-state structure possesses essentially zero BI1.A analogous to
a symmetrical cyanine [5]. increasing the ground-state polarization further (D) results in the
charge-separated canonical form dominating the ground state, leading to negative B1.A[6].
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Figure 1. contribution of neutral and charge-separated resonance forms to the ground state. BI.A
values, tuned by varying donor/acceptor strengths, were determined by X-my diffraction [3, 5, 6].

The relationship between 3 and B]1.A can be understood within the context of a two-state model
[7] in which the dominant component of the 3 tensor is given as:
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where g (e) isthe index of the ground (charge-transfer excited) state, yt and F are the dipole matrix
clement and transition energy between two subscripted states, respectively. It has been predicted
| 1,8] that as a function of increasing polarization (decreasing B1.A), starting from the polyene limit
(maximum positive B1.A): (i) Hee - Hgg, Starts positive, increases and reaches a positive peak
(region A, Figure 2); (ii) decreases, (region B); (iii) continues to decrease, passing through zero at
the cyanine-limit, becomes negative (region C); (iv) becomesincreasingly negative (region I)) and
(v) exhibits a negative peak and decreases in magnitude (region E). It is also predicted that ,ugzc and
1/15!),2(, peak at the cyanine-limit (Figure 2) and thus B, which is a product of these three terms,
exhibits positive and negative peaks closer to the cyanine-limit than where ((ee - Hgg) peaks. The
molecular second-order nonlinear optical properties of a series of donor-acceptor polyenes have
been evaluated by 1FISI 1 to test the structure-property relationships proposed in Figure 2.

Molecules 1-6 (Yigure 3) were examined since strong evidence exists that they cover
approximately the BI.A range A-E (Figure 2.) [9]. For example, B1.A values for 1 and 2,
determined by X-ray crystallography, are 0.05 A and 0,015 A respectively, suggesting that 1 lies
in region A and 2 in region B. X-ray crystallographic studies on 4, possessing a stronger
acceptor than 1 or 2, reveal a BLA of -0.014 A, suggesting that 4 lies in region C. Additionally,
3and 4 exhibit positive solvatochromism in nonpolar solvents and negative solvatochromism in
polar solvents (Table 1), indicative of BI.A changing sign as a function of solvent polarity [11].
These data suggest that 3 and 4 fall in region C. CompoundsS and 6 arc negatively
solvatochromic in all solvents used. Furthermore, the large 11 1-111 coupling constant across the




central carbon-carbon bond is consistent with a trans double bond as depicted in the zwitterionic
form of § and 6 (Figure 3, right). These data imply that § fallsin region 1) and that 6 fallsin 1) in
moderate polarity solvents possibly region K in highly polar solvents. Tor a given molecule,
BI.A can be fine-tuned by varying solvent polarit y since mixing of the neutral and charge-separated
canonical forms is sensitive to this perturbation [3,4,11]. For example, the progression of 5 and 6
towards a more charge-separated struct ure with increasing solvent polarity is evidenced by the
increase in the. 1,1-] 11 coupling constant across the central carbon-carbon bond (Figure 4).
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Figure 2. Dependence of the ground-state stracture on (12, (- = =), VEZ (), Hee Hgg )

and B (—) [ 1,8]. Ground-state polarization increases from A-E. The point where (tee - Hgg)
and 3 are zero corresponds to the "cyanine-limit" of zero BI.A (center of C).

Non-resonant EFIST | measurements of p-f3 were performed, at 1907 nm, on 1-6 in solvents
of varying polarity using apparatus and methodology described elsewhere [ 12]. The - product
and absorption maxima as a function of the normalized solvent polarity parameter ¥i1(30) are
presented in Table 1[9]. The pu-p product of 1 increases with solvent polarity, consistent with the
trend expected given the large BILA from previous structure determinations [3]. The stronger
dicyano moiety (2) increases the contribution of the charge-separated canonical form to the ground
state, BI.A decreases and - exhibits a positive peak (region B, Figure 2). A positive peak in
1B has been reported previously [ 1]. increasing the acceptor strength further by utilizing the
diethylbarbituric (3) and diethylthiobarbituric acid (4) moieties, results in decreasing
h yperpolarizabili ties with increasing solvent polarity. in fact, for 3 in the most polar solvent and 4
in nonpolar solvents p1- B changes sign, consistent with the structural assignment of 3 and 4 being
inregion C, as aresult of solvent stabilization of the charge-separated canonical form tuning BI.A
through the cyanine-limit [11]. The values of Aj,ax for 4 arc. maximized when p-p is close to
zero, consistent with the relationship depicted in Figure 2.. As the donor/acceptor strength is
further increased (5 and 6), a negative peak in p-B3, with increasing solvent polarity, is observed
consistent with the predicted behavior for region 1).




BuL. A CN BU g A AN
2 NM - - NN\/Y'

El\N/\/\/iLN,E! El\h/ / / (r\"N'E‘
——— W ] L]

3 L ’kﬁ) - Et L AS A -

(@]

E Et # 1 H
E‘\N N N° 1 N & ~~N
B | ¢

] A S

TN
[ |
o
%) Y o

o
i
\
¢
[
4
e
o

Figure 3. canonical charge-transfer resonance structures for the donor-acceptor polyenes
invest igated. Elect ron donor/acceptor strength in the neutra: form increases from 1-6. It = C2115

and Bu=n-Cyl 19.
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Figure 4. 1}]-1}] coupling constants for § and 6 as a function of solvent polarity [ 1 ()]. The trend
of increasing coupling constant with increasing solvent polarity is indicative of an evolution
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“J able 1. Solvent-dependent p- (units of 1(1-48 esu) for 1-6.  The estimated precision in p-f is
110%. ‘] "he polarity of the solvents increase (the contribution of the char ge- separated resonance
structure to the ground-state gecomet ry increases) from left to right. Normali zed E-(30) values of
the solvents [ 10] are presented within parentheses. “I"he maximum absorption wavelength (Amax,
units of nm) of the chromophores are given below the p-B values. insolubility precluded the
determination of p-f3 for § and 6 in certain solvents.

Solvent
CCl4 Cellg | CHCI3 | c112C12 | CH3CN | CH3NO?

Molecule | (0.0525) |(0.1111) | (0.2593) | (().3086) | (().456()) | (0.481s) | Region

1 u-p 299 272 322 343 348 430 A
Amax 396 404 420 420 418 426

2 u-p 332 360 400 340 231 19§ B
Amax 446 472 478 480 476 480

3 u-p 401 205 200 141 109 .6S C
Amax 498 504 [5 1 O 508 502 506

4 u-B 276 264 -22 -60 -240 -3106 C
Amax 526 532 536 534 524 5%6

5 u-B . -180 -374 -414 - -350 1)
Amax 528 520 510 | 506 488 490

6 pn-p - . -600 =770 -550 -363 | D/E
Amax 548 538 526 520 496 496

The electro-optic coefficient, r33, of the optimized p-B chromophore, 2, was measured at
820 nm using the thin-film cllipsometric technique [13]. The electro-optic coefficient is presented
in Table 1l along with the value for the conventional chromophore Disperse Red 1 (IDR1) for
comparison. Despite DR1being 4 atoms longer, its electro-optic coefficient is significantly less
than that of the optimized chromophore. This comparison underscores the benefit of the proposed
stracturc-property relationship in realizing chromophores possessing enhanced nonlinearities.

Table 11. Electro-optic cocfficients, conjugation lengths and maximum absorption wavelengths for
DR1and 2 in PMMA, both samples having identical chromophore loading (2 mole %) and poling
conditions (108 V/m at 120°C). Sample preparat ion details arc reported elsewhere | 14].

Molecule Length Amax 133
DR1 13 atoms 487 nm | 1.0 va-l
2 9 atoms 480 nm | 2.5 pmV-1

In summary, donor-acceptor polyenes of comparable conjugation length have been
synthesized and their solvent-dependent, non-resonant hypcrpolarizabilitics measured.
Optimization in a positive and negative sense, as well as a sign change in |-, was observed.
These observations were explained by molecular structure changes resulting from the variation of




‘mixing of neutral and charge-separated resonance forms upon changing donor/acceptor strengths
and solvent polarity. The trend of these gcometry-dependent hyperpolarizabilitics was fully
consistent with theoretical predictions. An optimized - 3 chromophore was incorporated in a
polymer host, poled and the resulting electro-optic coefficient measured. The optimized molecule
exhibited an enhanced response compared to the longer, conventional chromophore DR 1.
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